AIR MATH

Math Question

The point \( \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \) is the point at which the terminal ray of angle \( \theta \) intersects the unit circle. What are the values for the cosine and cotangent functions for angle \( \theta \) ?
\( \cos \theta=-\frac{\sqrt{2}}{2}, \cot \theta=-1 \)
\( \cos \theta=\frac{\sqrt{2}}{2}, \cot \theta=1 \)
\( \cos \theta=\frac{\sqrt{2}}{2}, \cot \theta=-\frac{1}{2} \)
\( \cos \theta=-\frac{\sqrt{2}}{2}, \cot \theta=\frac{1}{2} \)

Solution

solution

AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!
appstoreplaystore

Scan the QR code below
to download AIR MATH!

qrcode