AIR MATH

Math Question

TN0025973_1
8 A partial proof is given, using isosceles triangle \( A B C \), where angle \( B \) is the vertex angle.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Statements } & \multicolumn{1}{|c|}{ Reasons } \\
\hline 1. Isosceles \( \triangle A B C \) & 1. Given \\
\hline 2. \( \overline{A B} \cong \overline{B C} \) & 2. Definition of an isosceles triangle \\
\hline \( 3 . \overline{B D} \) bisects \( \angle A B C \) & 3. Given \\
\hline \( 4 . \angle A B D \cong \angle C B D \) & 4. Definition of an angle bisector \\
\hline 5. & 5. \\
\hline \( 6 . \triangle A B D \cong \triangle C B D \) & 6. Side-Angle-Side (SAS) \\
\hline
\end{tabular}
Which statement and reason complete the proof?
A. \( \overline{B D} \cong \overline{B D} \), Reflexive Property
B. \( \overline{A D} \cong \overline{D C} \), Definition of a midpoint
C. \( \angle A D B \cong \angle C D B \), All right angles are congruent.
D. \( \angle A \cong \angle C \), Base angles of an isosceles triangle are congruent.

Solution

solution

AIR MATH homework app,
absolutely FOR FREE!

  • AI solution in just 3 seconds!
  • Free live tutor Q&As, 24/7
  • Word problems are also welcome!
appstoreplaystore

Scan the QR code below
to download AIR MATH!

qrcode